class: center, middle, inverse, title-slide .title[ # Introduction to Biases and Reproducibility in Research ] .subtitle[ ## Module 2: Digitalisation in Research ] .author[ ### Hannah Metzler
CSH Vienna & Medical University of Vienna
] --- layout: true <div class="my-footer"><span><a href = "www.hannahmetzler.eu"> Hannah Metzler </a> </span></div> --- ## Can humans predict the future? ### History of the reproducibility crisis in psychology * [Feeling the future](https://d1wqtxts1xzle7.cloudfront.net/54466465/FeelingFuture-with-cover-page-v2.pdf?Expires=1637600022&Signature=eObuIJc0SRn9JWu0Ww0FhumpxPWmIKDDHNBJ~S-XE0q4lzlYOEfQPl3gS4H~0ENTGRtZbLFGOA2jNr0BSgaLFcMFWnd~PVLN0kAgGbZKlP8-xwD5jTqiOKwqdlmZBKc3KYlDhL8gTNMfQblRsLxGXy71-hAI5G1a~pvkjAQ9rRapLGDPz23idpNP~Eh2oubGad7TJtSvYsXaBNZy~B1PmwX7gD7MtEJoX6hboc-eKUAwN7iG22U-eCFjt29I2AKE5ezvVgEGU0~keW7euzwyIkfHoPf841bmqEb3HNnMPMePbXWGXwaVuLRepIOprH0-B5NcqxXJVNvdYvvQUTuL~w__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA): Paper by prominent psychologist in top psychology journal <br> <br> <center> <img src="figures/curtain-263731_1920.jpg" width="160" /> <img src="figures/curtain-263731_1920.jpg" width="160" /> </center> <br> * Exp 1: 53% accuracy in predicting location of *erotic* images (not others) <br> * Exp 2: Better at remembering words that are repeated later in time <br> <br> * 9 experiments, reviewed by 4 reviewers **???** ??? Exp 1: * Physiolocial sexual arousal 2-3 seconds before the picture <br><br> Exp 2: Visualize words, surprise recall test, then type 24 random words (memory) - students had better recall for the words they were later asked to type in --- layout: true <div class="my-footer"><span> <a href="https://journals.sagepub.com/doi/full/10.1177/0956797611417632"> Simmons et al. 2011 </a></span></div> --- # False positive psychology * Significant finding in psychology: p <.05 * False positive: statistically **significant result** if the **effect is not real** * Simulations of analytic flexilibity or __researcher degrees of freedom__ 1. 2 outcome variables 2. Add 10 more observations 3. Control for gender or interaction gender x treatment 4. Dropping one of 3 conditions * False positive probability increases **from 5% to 60.7%** if all 4 combined * Try it yourself: [P-hacking app](http://shinyapps.org/apps/p-hacker/) --- layout: true <div class="my-footer"><span> <a href = "http://amstat.tandfonline.com/doi/abs/10.1080/09332480.2005.10722754"> Ioannidis 2005 </a> </a></span></div> --- # Only one negative example? <br> Only psychology? .left-column[ <img src="figures/false_findings.svg" width="200" /> ] .right-column[.center-right[ * The more flexibility in design… * The more financial or other interests and prejudices… * The hotter scientific fields… … the less likely the research findings are to be true. ]] --- layout: true <div class="my-footer"><span> <a> Open Science Collaboration 2015; Klein et al. 2014; Camerer et al. 2018; Camerer et al. 2016; Hensel 2021; Gordon et al. 2020 </a></span></div> --- # Reproducibility in the social sciences .pull-left[.center-left[ * [Psychology 2015](http://science.sciencemag.org/content/349/6251/aac4716): 100 random studies: 38% replicated * 13 famous findings in [social psychology 2014](https://econtent.hogrefe.com/doi/10.1027/1864-9335/a000178): 38% replicated * [Behavioural economics 2016](http://science.sciencemag.org/content/351/6280/1433): 61% * [Social sciences 2018](https://www.nature.com/articles/s41562-018-0399-z): published in Nature & Science 2010-2015: 50%-67% * [SCORE](https://royalsocietypublishing.org/doi/10.1098/rsos.200566): Expert predictions ==> ]] .pull-right[.center-right[ Expected replication rates: <img src="figures/Golden_scoreproject.svg" width="500" /> ]] ??? [Management](https://www.sciencedirect.com/science/article/pii/S0263237321000025?dgcid=rss_sd_all) --- layout: true <div class="my-footer"><span> <a> Begley & Ioannidis 2015; Errington et al. 2014; Prinz et al. 2011; Begley & Ellis 2012; Francis, 2014; Ioannidis et al. 2009; Lancee et al. 2017; <br> Amara & Neves 2021 </a></span></div> --- # Reproduciblity in biology & medicine * [Review for basic and preclinical biomedical research](http://circres.ahajournals.org/content/116/1/116) <br> <br> * A few examples: <br> * [Cancer Biology/Oncology](https://elifesciences.org/articles/04333): so far [5 of 17](https://www.nature.com/articles/d41586-021-02486-7?proof=t%C2%A0) highly cited articles replicated <br> * 53 famous findings: [25%](https://www.nature.com/articles/nrd3439-c1?linkId=33568131) replicated by 1 firm, [11%](https://www.nature.com/articles/483531a#Tab1) by another <br> <br> * [Micro-array based gene expression studies](https://pubmed.ncbi.nlm.nih.gov/19174838/) in *Nature genetics*: 10-40%, <br> * Issues in [Epigenetics](http://www.genetics.org/content/198/2/449), [DNA methylation methods](https://www.sciencedirect.com/science/article/pii/S2666389920300143) <br> <br> * Pharmacology of [antipsychotic drugs](https://www.nature.com/articles/tp2017203): 81% deviate from registered plan <br> <br> * [Brazilian Reproducibility Initiative](https://www.nature.com/articles/d41586-021-02486-7?proof=t%C2%A0) for biomedical research --- layout: true <div class="my-footer"><span> <a> Kapoor & Narazanan 2021; Cova et al., 2018; Baker 2016 </a></span></div> --- .pull-left[ # Other disciplines * Computational reproducibility in [Machine Learning](https://reproducible.cs.princeton.edu/): * 4 out of 12 papers * [Checklist](https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf) for reproducible ML * [Experimental philosophy](https://psyarxiv.com/sxdah) * 70% of 40 experiments replicated * [Survey](https://www.nature.com/articles/533452a) in natural sciences ===> <!-- * Proportion of p-values .045-0.05 Head et al. Plos biology 2015 --> ] .pull-right[.center[ <br> <br>  ]] --- layout: true <div class="my-footer"><span> <a href="https://courses.lumenlearning.com/suny-natural-resources-biometrics/chapter/chapter-3-hypothesis-testing/"> Source Image 1 </a> <!-- <a href="https://libertytoday.uk/2013/03/07/the-nhs-can-only-guess/searching-blindfolded-man/"> Source Image 2</a> --> </span></div> --- # What are the reasons? .left-column[ <br> <img src="figures/null_hypothesis.png" width="200" /> <!-- ```{r, echo=FALSE, out.width=150,fig.align='center'} --> <!-- knitr::include_graphics("figures/searching-blindfolded-man.jpg") --> <!-- ``` --> <br><br><br> <img src="figures/manuscript-149606_1280.png" width="100" style="display: block; margin: auto;" /> ] .right-column[.center-right[ * Basic problems with common methods <font size="4"> <a href="https://statmodeling.stat.columbia.edu/2016/09/21/what-has-happened-down-here-is-the-winds-have-changed/"> Gelman 2016 </a></font> * Researcher degrees of freedom * Misunderstanding of statistical null-hypotheses testing * Multiple comparisons problems + weak theories * Humans: Complex systems with many variables * Problems in the publication system: Incentives * Peer review * Publication bias for positive findings * Pressure to publish <font size="4"> <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010271"> Fanelli 2010; <a href="https://journals.sagepub.com/doi/10.1177/1556264614552421">Tijdink et al. 2014 </a> </font> ]] --- layout: true <div class="my-footer"><span> <a href = "https://revistas.udc.es/index.php/ejge/article/view/ejge.2017.6.1.4322"> Peon et al. 2017 </a> </a></span></div> --- # Cognitive biases all humans have .middle[.left-column[ <br> <br> <img src="figures/mental-health-3350778_1280.png" width="200" /> ]] .right-column[.center-right[ * Selection bias: Seeking out information that confirms our view * Confirmation bias in evaluating information * Aversion to ambiguity * Groupthink: agreeing to easily * Cluster illusion: Recognizing patterns in randomness * Appeal to novelty ]] ??? https://www.nature.com/articles/d42473-019-00004-y#ref-CR17 mentions bandwgon and cluster illustion, not sure if good sources cited for this --- layout: true <div class="my-footer"><span> <a href = "https://commons.wikimedia.org/wiki/File:Cognitive_Bias_Codex_-_180%2B_biases,_designed_by_John_Manoogian_III_(jm3).jpg"> Benson Manoogian 2016 </a> </a></span></div> --- <img src="figures/cognitive_biases.jpg" width="850" style="display: block; margin: auto;" /> --- layout: true <div class="my-footer"><span> <a href = "https://www.nature.com/articles/526182a"> Nuzzo 2015; </a> <a href = "https://sites.google.com/site/cogmasterbonnespratiques/train-yourself"> Good practices material by Alex Christia; </a> <a href = "https://www.nature.com/articles/s41562-016-0021.pdf"> Munafo et al. 2017 </a> </a></span></div> --- # Biases in Research (non-exhaustive list) * Selection & confirmation bias in literature search & interpretation * Experimenter bias (e.g. [bright vs. dull rats](https://psycnet.apa.org/record/1965-01547-001), [power priming](http://journals.sagepub.com/eprint/zEiAqVspym6Y3XBmkhMJ/full)) * Poor quality control & documentation * Results analysis & interpretation: p-hacking, ignoring alternative explanations * Story telling: Hypothesizing/justifying after results are known <br> ([HARKing, JARKing](https://www.nature.com/articles/526182a)) * Write-up & publication bias towards positive results * Avoiding null-results & non-replications --- <!-- # Biases throughout the research process --> <!-- ```{r, echo=FALSE, out.width=800} --> <!-- knitr::include_graphics("figures/cruwell_biases_cycle.png") --> <!-- ``` --> <!-- [Crüwell et al. 2018](https://osf.io/cfzyx) --> <!-- --- --> # What do we do about all of this? <div style="text-align:center"> <span style="font-weight: bold; color:#1f5c99"> Acknowledge that we are all human: protect against biases, correct mistakes and change incentives </font> </span> </div> * Slower and more careful science <font size = "4"> <a href="http://www.sciencedirect.com/science/article/pii/S1364661319302426"> Frith 2020 </a> </font> * Better documentation & transparency (Open Science) * Cumulative Science <br> <br> * Encourage collaboration & team science * Large datasets, replication projects * Methodological experts<br><br> * Change incentive structures for publication & hiring <font size = "4"> <a href="https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2000995"> Higginson & Munafo, 2016 </a> </font> * Evaluation based on rigour not novelty <br><br> --- layout: true <div class="my-footer"><span><a href = "www.hannahmetzler.eu"> Hannah Metzler </a> </span></div> --- # Concrete Solutions tomorrow! ### Acknowledgements * Some slides based on presentations by Alex Cristia <br> (Ecole Normale Supérieure, Paris) * [Good practices materials](https://sites.google.com/site/cogmasterbonnespratiques/train-yourself) * Images on slide 2,8 & 9 CC0 from [pixabay.com](www.pixabay.com) --- # Discussion * Break-out rooms with 3 people * Come back in 30 minutes * Summary round (until 15h) * Which of these biases and problems are issues in your discipline? * Which solutions can you imagine? * How could digital tools be used to adress challenges and implement solutions in your discipline? * Which tool for which problem/bias?